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> Zooplankton: » Sampling was carried out in the Calvi Bay M . @
- ensures vital ecosystem roles in food bimonthly from 2004 to 2016, using a WP2 net :

Introduction Materials and Method j i e
- is abundant, world-wide spread and (Corsica, France), NW of the Mediterranean Sea i;‘ForS’Ca/
webs, organic carbon flux and microbial (200 um) and preserved in formaldehyde. | o ~_-

highly diverse; (Fig. 1). Sub-surface samples were collected
communities;
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- represents bio-indicators of climate P In addition, 10 variables (physical, — CLASSIFICATION
change. biological and chemical) were registered.
P Long time series are crucial to |
understand long-term changes of the ’ Zooplankton data were obtained through -~ ABUNDANCE
ecosystem. digital imaging and automatic classification SIZEBISCI)DII\E/I?;!SUM
» This study was conducted in the (Fig. 2) using the Zoo/ Phytolmage software ~ Bl ———
framework of the STARECAPMED program. | | and a high resolution scanner (Fig. 3). Fig, 1: Sampling area location ac%:iui.s o
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Copepod Copepod Chaetognath Euphausiacea Phyllosoma of Decapod Mantis shrimp larva
Calanus sp. Monstrilloida sp. (Krill) larva Spiny lobster larva Squilla mantis
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Mollusc Cavolinia Zoe decapod Ichtyoplankton
sp. Porcellana sp. Fish larva
Tunicate Tunicate Cladocera Annelid Cnidaria Cephalopod Ichtyoplankton
Salp Appendicularia Evadne sp. (Ephyra stage) larva Fish egg
Fig. 3: Examples of acquired plankton images
" - | Preliminary results
| . Average T° Colder period
temV[\)fsgure 1- P Strong interannual variations.
i 3 » Contrasting results regarding the
(C°) - relationship between water temperature
2- __ Warmer spring | Warmer period - and plankton abundances.
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_ | coincide with positive anomalies of
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I o _ | With the complete series (13 full years)
E S— - N m" " - |L||.‘|\ ] oy | -| we will be able to:
S o Wi H‘ | ‘ 1 P identify seasonal or annual patterns
§ | o . e o o e and trends of the mesozooplankton
g community over the last 13 years,
5 < _ P identify correlations with
O . .
< o l environmental variables,
S i o~y | - . .\ L il P identify interactions between
o ll il S ST W' plankton components (cascade events),
| o o o o o o » check whether the size spectra is
Vears shifting with climate changes.
Fig. 4: Partial analysis of the plankton series (five years). Temporal evolution of water temperature and - -
the abundance of a few taxonomical plankton groups. Interannual differences are already observable. Final I'ESUl,tlT g I'ebStIlIl( to come,
we € Dack...
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